ZERO-TE TECHNIQUE ON MAGNETIC RESONANCE: PRINCIPLES AND CLINICAL APPLICATIONS

Hoang Lam Nguyen , Thanh Phong Lê1, Huỳnh Nhật Tuấn Nguyễn1, Văn Phước Lê2
1 Bệnh viện Chợ Rẫy
2 Bộ môn Chẩn đoán hình ảnh - Đại học Y dược thành phố Hồ Chí Minh

Main Article Content

Abstract

Zero echo-time (ZTE) MRI is a new imaging technique that uses ultrafast readings to capture signals from short T2 tissues. Additional advantages of the pulse sequence include fast acquisition times, silent scanning, and artifact resistance. A powerful application of this technology is imaging the cortical bone without the use of ionizing radiation, thus presenting a viable alternative to CT for rapid screening and “one-stop” MRI. ZTE is increasingly used in musculoskeletal imaging, neuroimaging applications. In this article, we review the imaging physics of ZTE including pulse sequence options, practical limitations, and image reconstruction., image optimization including acquisition, processing, segmentation, synthetic CT generation, and artifact correction. We also introduce clinical applications of ZTE such as imaging related to malformations, trauma, tumors, and interventional procedures,...

Article Details

References

1. Wiesinger, F., & Ho, M. L. (2022). Zero-TE MRI: principles and applications in the head and neck. The British Journal of Radiology, 95(1136), 20220059.
2. Cho, S. B., Baek, H. J., Ryu, K. H., Choi, B. H., Moon, J. I., Kim, T. B., ... & Hwang, M. J. (2019). Clinical feasibility of zero TE skull MRI in patients with head trauma in comparison with CT: a single-center study. American Journal of Neuroradiology, 40(1), 109-115.
3. Kralik, S. F., Supakul, N., Wu, I. C., Delso, G., Radhakrishnan, R., Ho, C. Y., & Eley, K. A. (2019). Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology, 61, 81-87.
4. Lu, A., Gorny, K. R., & Ho, M. L. (2019). Zero TE MRI for craniofacial bone imaging. American Journal of Neuroradiology, 40(9), 1562-1566.
5. Jans, L. B., Chen, M., Elewaut, D., Van den Bosch, F., Carron, P., Jacques, P., ... & Herregods, N. (2021). MRIbased synthetic CT in the detection of structural lesions in patients with suspected sacroiliitis: comparison with MRI. Radiology, 298(2), 343-349.
6. Aydıngöz, Ü., Yıldız, A. E., & Ergen, F. B. (2022). Zero echo time musculoskeletal MRI: technique, optimization, applications, and pitfalls. Radiographics, 42(5), 1398-1414.
7. Madio, D. P., & Lowe, I. J. (1995). Ultra‐fast imaging using low flip angles and FIDs. Magnetic resonance in medicine, 34(4), 525-529.
8. Seevinck, P. R., Seppenwoolde, J. H., Zwanenburg, J. J., Nijsen, J. F., & Bakker, C. J. (2008). FID sampling superior to spin-echo sampling for T-based quantification of holmium-loaded microspheres: Theory and experiment. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 60(6), 1466-1476.
9. Lebel, R. M. (2020). Performance characterization of a novel deep learning-based MR image reconstruction pipeline. arXiv preprint arXiv:2008.06559.
10. Wiesinger, F., Menini, A., & Solana, A. B. (2019). Looping star. Magnetic resonance in medicine, 81(1), 57-68.