MRI imaging and cognitive disorders in children treated for cerebellar medulloblastoma
Main Article Content
Abstract
Objective: Neurocognitive impairment occurs commonly in children treated for medulloblastoma, affecting their quality of life
and school performance. The aim of this study was to investigate the involvement of the cerebellum in neurocognitive disorders observed in these children.
Material and methods: In this study, 12 children (7 males, 5 females, mean age 13,0±1,6 years) treated for cerebellar
medulloblastoma and 18 age-matched control children were recruited to perform neuropsychological tests. All subjects were
native French speakers, right-handed, with a global intelligence quotient (IQ) of 70-130. Structural MRI and SUIT model (spatially unbiased infratentorial and cerebellar template) were used to show the position of resected lesions in the patient group. Neuropsychological data were analyzed by using a Mann- Whitney U test.
Results: Patient group had cognitive impairments including visuospatial performance (6/12 patients), verbal memory (1/12
patients), processing speed (4/12 patients). Patients with resected lesions in the left posterior lobe of the cerebellum (7/12 patients) suffered from visuospatial memory impairment (6/7 patients).
Conclusion: In conclude, this study provides further evidence that the cerebellum plays a role in working memory.
The left posterior cerebellar lobe may be involved in children’s visuospatial working memory.
Article Details
Keywords
Children, Medulloblastoma, Working Memory, cerebellar MRI
References
2. Knight, S. J., Conklin, H. M., Palmer, S. L., Schreiber, J. E., Armstrong, C. L., Wallace, D., … Gajjar,A. (2014). Working Memory Abilities Among Children Treated for Medulloblastoma: Parent Report and Child Performance. Journal of Pediatric Psychology.
3. Schmahmann, J. D., & Caplan, D. (2006). Cognition, emotion and the cerebellum. Brain: A Journal of Neurology, 129(Pt 2), 290–292.
4. Hoang, D. H., Pagnier, A., Guichardet, K., Dubois- Teklali, F., Schiff, I., Lyard, G., … Krainik, A. (2014). Cognitive disorders in pediatric medulloblastoma: what neuroimaging has to offer. Journal of Neurosurgery. Pediatrics, 1–9.
5. Moulton, E. A., Elman, I., Becerra, L. R., Goldstein, R. Z., & Borsook, D. (2014). The cerebellum and addiction: insights gained from neuroimaging
research. Addiction Biology, 19(3), 317–331.
6. Ramnani, N. (2012). Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum (London, England), 11(2), 366–383.
7. Exner, C., Weniger, G., & Irle, E. (2004). Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology, 63(11), 2132–2135.
8. Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage, 59(2), 1560–1570.
9. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In The psychology of learning and motivation: Advances in research and theory (In G. A. Bower (Ed.), Vol. 8, pp. 47–89). New York: Academic Press.
10. Wechsler, D. (2005). Echelle d’intelligence de Wechsler pour enfants et adolescents (4th ed.). Paris: ECPA - Editions du Centre de Psychologie Appliquée.
11. Pickering, S. J., & Gathercole, S. E. (2001). Working memory test battery for children (London: Psychological Corporation Europe).
12. Schmahmann, J. D., & Sherman, J. C. (1998a). The cerebellar cognitive affective syndrome. Brain: A Journal of Neurology, 121 ( Pt 4), 561–579.
13. Hokkanen, L. S. K., Kauranen, V., Roine, R. O., Salonen, O., & Kotila, M. (2006). Subtle cognitive deficits after cerebellar infarcts. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies, 13(2), 161–170.
14. Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain: A Journal of Neurology, 123 ( Pt 5), 1051–1061.
15. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489–501.
16. Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z.-W., Williams, L. M., … Etkin, A. (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences, 110(49), 19944–19949.
17. Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A Meta-analysis of Executive Components of
Working Memory. Cerebral Cortex, 23(2), 264–282.
18. Schmahmann, J. D., & Pandya, D. N. (1997). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 17(1), 438–458.
19. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(23), 8432–8444.
20. Law, N., Bouffet, E., Laughlin, S., Laperriere, N., Brière, M.-E., Strother, D., … Mabbott, D. (2011). Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. NeuroImage, 56(4), 2238–2248.
21. Soelva, V., Hernáiz Driever, P., Abbushi, A.,Rueckriegel, S., Bruhn, H., Eisner, W., & Thomale, U.-W. (2013). Fronto-cerebellar fiber tractography
in pediatric patients following posterior fossa tumor surgery. Child’s Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery, 29(4), 597–607.
22. Khong, P.-L., Leung, L. H. T., Fung, A. S. M., Fong, D. Y. T., Qiu, D., Kwong, D. L. W., … Chan, G. C. F. (2006). White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 24(6), 884–890.