The value of ultrasound in the diagnosis of thyroid cancer

Nguyễn Văn Hách, Nguyễn Văn Mùi, Nguyễn Thị Lan Hương, Nguyễn Đức Công

Main Article Content

Abstract

Objective: To determine the value of ultrasound in the diagnosis of thyroid cancer.
Subjects and methods: A cross-sectional descriptive study on 98 patients with thyroid nodules who came for treatment at the Military Institute of Medical Radiology and Oncology, from April 2020 to March 2021.
Results: The size of malignant nodules was mainly less than 2cm. Thyroid cancer lesions were mainly characterized by highly hypoechoic on ultrasound (61.19%). Thyroid cancer nodules had taller-than-wide feature (Sensitivity: 76.12%; specificity: 86.96%; positive predictive value: 89.47%; negative predictive value: 71.43%; accuracy: 80.53%.); irregular border feature (sensitivity: 98.51%; specificity: 86.96%; positive predictive value: 91.67%; negative predictive value: 97.56%; accuracy: 93.81%); microcalcification characteristics (sensitivity: 73.13%; specificity: 91.30%; positive predictive value: 92.45%; negative predictive value: 70.00%; accuracy: 80,53%). TIRADS value in thyroid cancer diagnosis with sensitivity: 94.03%; specificity: 86.96%; positive predictive value: 91.30%; negative predictive value: 90.91%; Accuracy: 91.15%.
Conclusion: The features of hypoechoic nodules, taller-than-wide shape, irregular border, microcalcification characteristics, and TIRADS 4, TIRADS 5 scores had high prognostic value for thyroid cancer.

Article Details

References

1. Freddie Bray, Jacques Ferlay, Isabelle Soerjomataram, et al. (2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J Clin 68: 394–424.
2. Hee Jung Moon, Jin Young Kwak, Min Jung Kim, et al. (2010). Can Vascularity at Power Doppler US Help Predict Thyroid Malignancy? Radiology, 255: 260-269.
3. Trần Thúy Hồng (2013), Đặc điểm hình ảnh và giá trị của siêu âm trong chẩn đoán các tổn thương khu trú tuyến giáp, Luận văn thạc sỹ y học, Đại Học Y Hà Nội.
4. Alper Ozel, Sukru Mehmet Erturk, Alkin Ercan et al (2012). The diagnostic efficiency of ultrasound in characterization for thyroid nodules: how many criteria are required to predict malignancy? Med Ultrason, 14(1): 24-28.
5. Vũ Tất Giao (2015), Nghiên cứu giá trị siêu âm trong phân loại TIRADS các tổn thương khu trú tuyến giáp, Luận văn Thạc sĩ, Đại học Y Hà Nội.
6. Jin Young Kwak, Kyung Hwa Han, Jung Hyun Yoon (2011). Thyroid Imaging Reporting and Data System for US Features of Nodules : A Step in Establishing Better Stratifi cation of Cancer Risk. Radiology, 260 (3): 892-99.
7. Yu-rong HONG, Yu-lian WU, Zhi-yan LUO (2012). Impact of nodular size on the predictive values of gray-scale, color-Doppler ultrasound, and sonoelastography for assessment of thyroid nodules. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology, 13(9): 707-716.
8. Boniface Moifo, Emmanuel Oben Takoeta, Joshua Tambe et al (2013). Reliability of Thyroid Imaging Reporting and Data System (TIRADS) Classification in Differentiating Benign from Malignant Thyroid Nodules. Open Journal of Radiology, 3: 103-107.
9. Châu Thị Hiền Trang, Nguyễn Thanh Thảo, Hoàng Minh Lợi (2015). Nghiên cứu ứng dụng phân loại TIRADS trong chẩn đoán tổn thương dạng nốt tuyến giáp trên siêu âm. Điện quang Việt Nam, 21: 17-22.